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LETTER TO THE EDITOR 

Vortices and the prescribed curvature problem 

A Comtet? and P J Houston$ 
t Division de Physique Theoriques IPN, BP No 1, F-91406 Orsay, Cedex, France 
$ School of Mathematics, 39 Trinity College, Dublin 2, Republic of Ireland 

Received 7 May 1985 

Abstract. The static Abelian Higgs model in an arbitrary two-dimensional geometry is 
considered. The consistency of a Bogomol’nyi bound to the energy functional is discussed 
and it is shown that the Bogomol’nyi equations are equivalent to a prescribed curvature 
problem. 

The Landau-Ginzburg model [l] for a superconducing material which is uniform in 
one direction defines the usual two-dimensional Abelian Higgs model. It is known 
that, on the whole Euclidean plane, the energy functional for this model has a finite 
lower bound [2]. Moreover, for a certain choice of model parameters, which corre- 
sponds to a superconductor between type I and type 11, this Bogomol’nyi bound can 
be saturated if a system of first-order equations are satisfied. These equations have 
been shown to be solved completely by vortex-like configurations and for these solutions 
the energy functional is stationary [3]. 

In this letter we consider the Abelian Higgs model for a superconducting shell of 
arbitrary shape. We show that, for the static problem, the energy functional, defined 
from the intrinsic geometry of the shell alone, a Bogomol’nyi bound is possible. 
However, the equations required to saturate this bound have only non-trivial solutions 
for a certain class of geometries (which essentially rules out the possibility of a bounded 
superconducting shell). For such geometry we show that the Bogomol’nyi equations 
are equivalent to a prescribed curvature problem for a two-dimensional Riemannian 
manifold. 

The expression for the free energy of a superconductor occupying a region R of 
space as a functional of the complex valued order parameter 4 = 41 + i 42  = 4(x1,  x2, x3) 
and the vector field representing the magnetic induction A = A(x’, x2, x3) is given as 
follows (in appropriate units of measurement) 

% ( + , A ) =  [+(V4-iA+l2+if(V XA)2+$~(14(2 -1 )2 ]d3~ .  (1) I, 
The desciption of the state of the superconducting material is given by the stationary 
points of 8: 6% = 0 and results in the following boundary value problem 

-(V-iA)’4+&(I4I2-  1)4 =0,  (2) 

V x(V xA)+$i(c#J*(V-iA)qb-4{(V-iA)+}*) =0, (3) 

n * (v - i A ) d  IjR = x (v x A)IjR = 0, (4) 
8 Laboratoire associ6 au CNRS. 
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where n denotes the unit normal vector to the surface bounding R, aR. We now 
suppose that the superconductor is a thin shell. Thus, in terms of some orthogonal 
curvilinear coordinate system on R3, (U', U', U'), U' = u'(x', x2, x'), the shell R may 
be written in the form: O <  U' < E ~ ( u ' ,  U'), (U', U') E M. Here M denotes a region in 
the plane or the whole plane itself and E, which represents the scale of the thickness 
of the shell, is assumed small in comparison with any other length scale associated 
with the shell. (We can accommodate some variability in the thickness of the shell by 
allowing d ( u ' ,  u 2 )  to be non-constant.) On the assumption that field variations trans- 
versally across the shell are negligible and using the boundary condition (4) on the 
upper and lower surfaces of the shell we have 

throughout the shell. (Here Ai = (axJ/au')A,.) We let the metric induced on the shell 
from the Euclidean metric on R3 be 

d s 2 =  gap(ul, u 2 )  du" duP, 
0 , p  = 1 

where (U', U') E M is regarded as a local coordinate system on the shell and 

Thus the energy functional (1) becomes 

= M du'  du' p{ :gap [ (&-iAa)4] *[ (5- iAp)4]  

+ $g"a'g@P'F a0 F a , p ' + i / L ( 1 4 1 2 -  1)2}* ( 6 )  

Here we have dropped the tilde on A, Fap =aAp/aUa -aAa/auP CY, p = 1, 2 and we 
have integrated over the U' variable, as the integrand is independent of u3 to the lowest 
order in E (the function p(u',  u 2 )  can be written in terms of the Jacobian of the 
transformation (x', x2, x') + (U', U', U') and d (  U', U')). The description of the super- 
conducting shell is given by SE = 0 and results in the following boundary value problem 

where n is the unit normal to aM, the boundary of M. 
On any two-dimensional manifold we may choose conformal coordinates. Doing 

this in our case the metric becomes ds' = A2(u', U') du" du" i.e. gap = A'S,,, dg = A', 
and A' is nowhere zero in M. For the choice p(u' ,  u 2 )  = 1 (which will hold henceforth) 
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the energy functional ( 6 )  may be put in the form (using conformal coordinates) 

E (  4, A) = I du '  du' A2{ fh -' 1 [ (5 - i AI) * i(  -$ - iA2)] 4 1' 
M 

where Q is the boundary integral 

Q = i I J M  [Ao-i4*(+-iA.)4] du". 

Here aM denotes the boundary of M if M is a bounded region or the circle at infinity 
if M is R2. In the case p = 1,  which corresponds to a superconductor between type I 
and 11, we can write the Bogomol'nyi bound: E (  4, A) 2 IQ( and we can saturate the 
bound when the first-order Bogomol'nyi system of equations is satisfied i.e. 

The boundary conditions associated with these equations are 

Equation ( 1 1 )  can be solved for A, 

Then the boundary value problem defined by equations ( 1 1 ) - ( 1 3 )  reduces to one for 
the single undermined function 1412, namely 

A ln14I2 = 141'- 1,  ( 1 5 )  

with, if M is bounded 

14121aM - 1 = o  

MI2+ 1,  as Iul+co. ( 1 6 b )  
Here, A denotes the Laplacian on M :  A =  A-'[(a/au')'+(a/au')']. 

A condition which remain to be accounted for has to do with the topology of the 
fields. When 4, which is required to be at least twice differentiable on M = MUaM, 
is restricted to the boundary it gives a continuous map aM + SI, the unit circle, if M 
is bounded, or from the circle at infinity to S' if M = R'. Letting the integer N be the 
winding number of this map we have from equations ( 1 0 )  and ( 1 6 )  that 

and with the appropriate choice of * in equations (9), ( 1 1 )  and ( 1 2 )  then E = n(N1. 
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There is a difficulty with the Bogomol’nyi system on M if M is bounded since the 
boundary conditions (16a)  are overdetermined. Thus we will henceforth consider the 
case M = R2 and the boundary value problem for 141’ given by equations (15) and 
(16b). For simplicity we will also suppose that the metric on M is Euclidean asymptoti- 
cally i.e. A 2 +  1 as IuI + CO. The map 4 l S ~  is given as a boundary condition and in 
solving equations (11) and (12) we are extending this map to obtain a continuous 
complex valued mapping r# on C = R2. Thus if N # 0 we expect?, from equation (17), 
that Arg #I has IN1 isolated singularities (generically) in M and this is possible only 
if 4 has IN[ zeros in M. In addition to equations (15) and (16) we have the conditions 

(18) 

where n = IN1 and where we take ai # a,, i Z J  (if two or more of the points a,, a’,. . . 
coincide, the multiplicity of the zero of 141’ must be counted). 

For any metric y ’ [ ( d ~ ~ ) ’ + ( d u ~ ) ~ ]  on a two-dimensional manifold the scalar cur- 
vature is given by 

Id2 = 0, at a,, Q 2 , .  - * , a n ,  

S ( y 2 )  = -~y’[(a/a~’)’+(a/au’)~](ln 7’). (19) 

Let A’ be written as l + [ ( a / a ~ ’ ) ~ + ( a / d ~ ~ ) ~ ] p ,  where the function p is such that 
-CO<p<CO, O<A2<m and A 2 + 1 ,  as lul+CO (in particular if A 2 = 1  we take p = O ) .  
We then have 

A 2  = [ ( d / d u ’ ) ’ +  (a /au2) ’ ]  ln(exp(blzl’+p)), (20) 

where z = u 1 + i u 2 ,  and equation (15) for 141’ can be written as the condition that the 
conformal deformation of the metric: exp(alz12+ p)[(du’)’+ ( d ~ ’ ) ~ ]  by multiplying by 
141’ preserve the scalar curvature i.e. 

S(l4’  exp(flz12+ P I )  = S(exp($lz12 + P I ) .  (21) 

The metric 141’ exp(;lz/’+ P)[(du’)’+ (du2)’] has singularities at the points a,, 
a,, . . . , a, corresponding to the zeros of 14)’. We can remove these singularities by 
defining the following metric 

Equation (15) for 141’ can now be stated in the form of a prescribed curvature problem 
for the metric (22) 

S ( y ’ )  = Iz - a l l2 . .  . )z - an/’ exp(-$Iz)‘-p)A2. 

y 2  + exp(tlz/2)1zI-2n, as IzI + CO, (24) 

(23) 
This prescribed curvature problem for y2  together with the asymptotic condition that 

may be regarded as a special case of Dirichlet problem for the complex Monge-Ampere 
equation in a single complex variable z[4]. Theorems on existence and uniqueness for 
this problem have as yet only been proven for bounded domains [5]. Thus, unfortu- 
nately, we are unable to infer existence and uniqueness for the solution to equations 
(23) and (24). In fact the converse may be inferred if A 2 =  1 ( p  = O ) .  That is, the 
Bogomol’nyi problem (as given by equations (15), (16b), (17) and (18)) ,  with A’= 1 

t I f  the solution for 6 is real analytic as for the A’ = 1 case [3]. 
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has already been shown to have a unique solution [3]. Therefore, the equivalent 
prescribed curvature (Dirichlet-Monge-Ampere) problem of equations (23) and (24) 
with A’ = 1 has also a unique solution on R2. 
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